
How	can	P4	programmability	
help	this	workshop?

Changhoon	Kim

“Which	path	did	my	packet	take?”1
“I	visited	Switch	1	@780ns,	

Switch	9	@1.3µs,	Switch	12	@2.4µs”

“Which	rules	did	my	packet	follow?”2

“In	Switch	1,	I	followed	rules	75	and	250.	
In	Switch	9,	I	followed	rules	3	and	80.	”

Rule

1

2

3

…

75 192.168.0/24

…

“How	long	did	my	packet	queue	at	each	switch?”3 “Delay:	100ns,	200ns,	19740ns”

Time

Queue

“Who	did	my	packet	share	the	queue	with?”4

“How	long	did	my	packet	queue	at	each	switch?”3 “Delay:	100ns,	200ns,	19740ns”

Time

Queue

“Who	did	my	packet	share	the	queue	with?”4

Aggressor	flow!

The	network	should	answer	these	questions

1. “Which	path	did	my	packet	take?”
2. “Which	rules	did	my	packet	follow?”
3. “How	long	did	it	queue	at	each	switch?”
4. “Who	did	it	share	the	queues	with?”

PISA	+	P4	can	answer	all	four	questions	for	the	first	time.		
At	full	line	rate.	Without	generating	any	additional	packets!

1

2

3

4

DTEL:	P4	library	for	data-plane	telemetry
• “Track	every	flow”:	Flow	Reporting

– Monitor	and	report	every	flow’s	path	and	latency
– Via	end-to-end	or	hop-by-hop	In-band	Network	Telemetry	

• “Track	every	drop”:	Drop	Reporting
– Mirror	every	dropped	packet	along	with	the	drop	reason

• “Track	every	congestion”:	Congestion	Reporting
– Produce	packet-level	snapshots	of	a	congested	queue
– Detect,	characterize,	and	analyze	microbursts

6

Log,	Analyze
Replay

Visualize

Flow	Reporting:	INT	End-to-end	Mode
• Leverages	In-Band	Network	Telemetry	(INT)

https://github.com/p4lang/p4-applications/blob/master/docs/INT_v0_5.pdf

7

Original Packet

Add:	SwitchID,	Arrival	Time,	
Queue	Delay,	Matched	Rules,	…

INT	Sink
Removes	metadata

INT	Transit
Adds	metadata	based	on	INT	

instructions

INT	Source
Instruments	packets	for	Telemetry

CD
[Change	Detector]
“Monitor	every	packet,

but	report	only	what	matters!”
- Generate	reports	upon

• Flow	initiation	&	termination
• Path	or	queueing	latency	changes
• Special	field	values

- Change	detectors	are	reset	periodically	
(e.g.,	once	every	sec)

Flow	Reporting:	INT	Hop-by-hop	Mode

8

SwitchID,	Arrival	Time,	
Queue	Delay,	Matched	Rules,	…

CD

CD

CD

CD

CD

CD

Original Packet

Original Packet Original Packet

[Change	Detector]
- Reset	frequently

(e.g.,	once	every	sec)

[Change	Detector]
- Reset	much	less	frequently

(e.g.,	once	every	10	sec)

[Change	Detector]
- Reset	frequently

(e.g.,	once	every	sec)

Log,	Analyze
Replay

Visualize

Flexibility	matters

9

/* INT: add switch id */
action int_set_header_0() {
add_header(int_switch_id_header);
modify_field(int_switch_id_header.switch_id,

global_config_metadata.switch_id);
}

/* INT: add ingress timestamp */
action int_set_header_1() {
add_header(int_ingress_tstamp_header);
modify_field(int_ingress_tstamp_header.ingress_tstamp,

i2e_metadata.ingress_tstamp);
}

/* INT: add egress timestamp */
action int_set_header_2() {
add_header(int_egress_tstamp_header);
modify_field(int_egress_tstamp_header.egress_tstamp,

eg_intr_md_from_parser_aux.egress_global_tstamp);
}

Programmable	
Telemetry

P4 code snippet: switch ID, ingress and egress timestamp

Time	(nsec)

Q
ue

ue
in
g	
La
te
nc
y	
(n
se
c)

Latency	change	detection	sensitivity		=	256us

1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09

0

0.5e+06

1.5e+06

1e+06

How	does	a	congested	queue	behave?

Time	(nsec)

Q
ue

ue
in
g	
La
te
nc
y	
(n
se
c)

Latency	change	detection	sensitivity		=	256us
Latency	change	detection	sensitivity		=	16us

9.8e+09

1.0e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

1e+10 1.02e+10 1.04e+10 1.06e+10 1.08e+10 1.1e+10 1.12e+10

How	does	a	congested	queue	behave?

50	connections25	connections

Results	with	more	connections

Visualizing	microbursts	(to	the	nanosecond)

13

What	does	this	mean?
• Switch	can	literally	inspect	every	single	packet	and	export	

just	relevant	information
• No	loss	of	visibility	due	to	sampling,	probing,	or	control-

plane-based	polling
• Always-on	drop,	congestion,	and	flow	tracking	is	possible
• This	is	already	available	on	off-the-shelf	brand-name	

switches
• Huge	opportunities	for	Big-data	processing	and	machine-

learning	experts

14

Smarter	and	Faster	Congestion	Notification
• Smarter	congestion	notification

– Use	more	accurate	and	relevant	congestion	signals	such	as	queue	growth	or	
decrease	velocity	(e.g.,	direction,	not	just	values),	fair	rates	for	flows,	etc.	

– Use	additional	congestion	information	such	as	app-pool-level	queue	occupancy
– Differentiated	treatment	for	lossy and	lossless	traffic	to	improve	fairness	

between	the	two	traffic	classes

• Faster	congestion	notification
– Use	early	indicators	of	congestion	such	as	dequeue-time	queue	depth,	link	

utilization
– Directly	generate	congestion	notifications	(e.g.,	CNPs)	for	heavy	hitters

• Up	to	O(10^3)	~	O(10^4)	heavy	flows

Smarter	Way	of	Reacting	To	Congestion
• Dynamic,	congestion-aware	load	balancing

– Path-level	(global)	or	hop-level	(local)	congestion-aware	next-hop	resolution
– Offered	with	flowlet switching,	addressing	out-of-order	delivery	upon	path	changes
– E.g.,	HULA	prototypes	available.	CONGA	is	feasible.

• Smart	and	safe	pausing
– Rich	PFC	statistics	and	anomaly	(e.g.,	PFC	deadlock)	detection
– Congestion	isolation;	having	upstream	device	“surgically”	pause	or	rate-limit	heavy	flows	

(similar	to	IEEE	802.1Qcz)

• Enhanced	in-cast	mitigation
– Burst	absorption	via	“packet	parking”;	use	generic	external	memory	(DRAM/HBM)	as	

temporary	packet	buffers	accessible	via	data	path	(Ethernet)

Want	to	find	more	resources	or	follow	up?
• Technical	References

– In-band	Network	Telemetry	(P4.org	App	WG)
https://github.com/p4lang/p4-applications/tree/master/docs

– Telemetry	Report	Format	Specification	(P4.org	App	WG)	
https://github.com/p4lang/p4-applications/tree/master/docs

– In-situ	OAM	(IETF)	
https://tools.ietf.org/html/draft-brockners-inband-oam-data-07

– Cisco	Nexus	34180,	INT	Configuration	Guide
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000
/sw/programmability/9_x/b_Cisco_Nexus_3000_Series_NX-
OS_Programmability_Guide_9x/b_Cisco_Nexus_3000_Series_NX-
OS_Programmability_Guide_9x_chapter_011110.pdf

17

