How can P4 programmability
help this workshop?

Changhoon Kim

BAREFCO:T

NETWORKS



“I visited Switch 1 @780ns,
o “Which path did my packet take?” ~ Switch 9 @1.3us, Switch 12 @2.4us”

e
-

“In Switch 1, | followed rules 75 and 250.
In Switch 9, | followed rules 3 and 80. ”

75 192.168.0/24 @ “Which rules did my packet follow?”



“How long did my packet queue at each switch?” “Delay: 100ns, 200ns, 19740ns”

~—
-

N

Queue

“Who did my packet share the queue with?”

Time



9 “How long did my packet queue at each switch?” “Delay: 100ns, 200ns, 19740ns”

Aggressor flow!

Queue

@ “Who did my packet share the queue with?”




The network should answer these questions

® Wwhich path did my packet take?”
© “Which rules did my packet follow?”

9 “How long did it queue at each switch?”
O Who did it share the queues with?”

PISA + P4 can answer all four questions for the first time.
At full line rate. Without generating any additional packets!



DTEL: P4 library for data-plane telemetry
“Track every flow”: Flow Reporting

— Monitor and report every flow’s path and latency
— Via end-to-end or hop-by-hop In-band Network Telemetry

“Track every drop”: Drop Reporting

— Mirror every dropped packet along with the drop reason

“Track every congestion”: Congestion Reporting
— Produce packet-level snapshots of a congested queue
— Detect, characterize, and analyze microbursts



Flow Reporting: INT End-to-end Mode

Leverages In-Band Network Telemetry (INT)
https://github.com/p4lang/p4-applications/blob/master/docs/INT vO 5.pdf

INT Transit
Adds metadata based on INT
instructions

[ Add: SwitchID, Arrival Time, ] INT Sink
Queue Delay, Matched Rules, ... * Removes metadata

Original Packet

h i [Change Detector]

“Monitor every packet,
but report only what matters!”
- Generate reports upon
* Flow initiation & termination
INT Source * Path or queueing latency changes
Instruments packets for Telemd * Special field values

- Change detectors are reset periodically -
(e.g., once every sec) Log, Analyze Visualize

Replay

7




Flow Reporting: INT Hop-by-hop Mode

[Change Detector]

- Reset much less frequently
(e.g., once every 10 sec)

[Change Detector]

- Reset frequently
(e.g., once every sec)

[Change Detector]

- Reset frequently
(e.g., once every sec)

[ SwitchID, Arrival Time, ]

Queue Delay, Matched Rules, ... Log, Analyze Visualize

Replay




Flexibility matters

/* INT: add switch id */
action int set header 0() {

add header (int switch id header) ;

modify field(int switch id header.switch id, /
global config metadata.switch id);

}

/* INT: add ingress timestamp */
action int set header 1() ({
add header (int ingress tstamp header) ;
modIfy_field(iﬁf_ingrégs_tstaﬁp_header.ingress_tstamp,
i2e metadata.ingress_ tstamp) ;
}

/* INT: add egress timestamp */
action int set header 2() {
add header (int egress tstamp header) ;
modify field(int_egress_tstamp header.egress_ tstamp,
eg_intr md from parser aux.egress global tstamp) ;

P4 code snippet: switch ID, ingress and egress timestamp

Programmable
Telemetry



How does a congested queue behave?
1.5e+06 -

%)
A
=
O let06L |
C
Q
s
o]0}
C
‘O
o 0.5e+06 -
)
o]

ol —— Latency change detection sensitivity = 256us |

| | | | | |

1.5¢+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09
Time (nsec)



How does a congested queue behave? L

1.8e+06

1.6e+06

1.4e+06

1.2e+06:

Queueing Latency (nsec)

----------- Latency change detection sensitivity = 16us

1.0e+06

Ll ]

----------- Latency change detection sensitivity = 256us

1 | l | ] | 1 |
9.8e+09 le+10 1.02e+10 1.04e+10 1.06e+10 1.08e+10 1.1e+10 1.12e+10

Time (nsec)




Results with more connections

25 connections 50 connections




Visualizing microbursts (to the nanosecond)

Timestamp Switch Id Queue

July 25,2017 -18:17:51.513UTC

Queue Occupancy Over Time (bytes)

8
8

150,000_| ] IIIIIIIIII
m i ]

100,000_| III "III
s kAR A ovanmannnnn JI Illlll.“llll

:
. ol AT
.. aii L

10 60 -40 20 0 20 40

100

Time fiom congestion anomaly record

17 Affected Flows

Flow kBin Queue % of Queue Buildup Packet Drops
10.32.2.2:46380-> 10.36.1.2:5101 TCP 3282 29 0
10.32.2.2:46374 -> 10.36.1.2:5101 TCP 30735 27 . 25
10.32.2.2:46386 -> 10.36.1.2:5101 TCP 2092.5 18 27
10.32.2.2:46388-> 10.36.1.2:5101 TCP 1456.5 13 o
10.32.2.2:46390-> 10.36.1.2:5101 TCP 1227 11 36
10.32.2.2:46372 -> 10.36.1.2:5101 TCP 45 0 o]
10.32.2.2:46392 -> 10.36.1.2:5101 TCP 375 0 39

10.35.1.2:34256 -> 10.36.1.2:5102 TCP 345 0 [}



What does this mean?

Switch can literally inspect every single packet and export
just relevant information

No loss of visibility due to sampling, probing, or control-
plane-based polling

Always-on drop, congestion, and flow tracking is possible

This is already available on off-the-shelf brand-name
switches

Huge opportunities for Big-data processing and machine-
learning experts



Smarter and Faster Congestion Notification

* Smarter congestion notification

— Use more accurate and relevant congestion signals such as queue growth or
decrease velocity (e.g., direction, not just values), fair rates for flows, etc.
— Use additional congestion information such as app-pool-level queue occupancy

— Differentiated treatment for lossy and lossless traffic to improve fairness
between the two traffic classes

* Faster congestion notification

— Use early indicators of congestion such as dequeue-time queue depth, link
utilization
— Directly generate congestion notifications (e.g., CNPs) for heavy hitters
« Upto O(1073) ~ O(1074) heavy flows



Smarter Way of Reacting To Congestion

* Dynamic, congestion-aware load balancing

— Path-level (global) or hop-level (local) congestion-aware next-hop resolution
— Offered with flowlet switching, addressing out-of-order delivery upon path changes
— E.g., HULA prototypes available. CONGA is feasible.

* Smart and safe pausing
— Rich PFC statistics and anomaly (e.g., PFC deadlock) detection

— Congestion isolation; having upstream device “surgically” pause or rate-limit heavy flows
(similar to IEEE 802.1Qcz)

* Enhanced in-cast mitigation

— Burst absorption via “packet parking”; use generic external memory (DRAM/HBM) as
temporary packet buffers accessible via data path (Ethernet)



Want to find more resources or follow up?

Technical References
— In-band Network Telemetry (P4.org App WG)
https://github.com/p4lang/p4-applications/tree/master/docs
— Telemetry Report Format Specification (P4.org App WG)
https://github.com/p4lang/p4-applications/tree/master/docs

— In-situ OAM (IETF)
https://tools.ietf.org/html/draft-brockners-inband-oam-data-07

— Cisco Nexus 34180, INT Configuration Guide
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000

/sw/programmability/9 x/b Cisco Nexus 3000 Series NX-
OS Programmability Guide 9x/b Cisco Nexus 3000 Series NX-
OS Programmability Guide 9x chapter 011110.pdf

17



